Centre for Biological Signalling Studies

PD Dr. Akos Kulik

PD Dr. Akos Kulik

Institute of Physiology II
University of Freiburg

+49 761 203 67305


Functionally diverse metabotropic GABAB and glutamate receptors (mGluRs) control neuronal excitability and synaptic transmission by activating or inhibiting various types of ion channels, such as high voltage-activated Ca2+, as well as K+ channels. The impact of receptor activation on synaptic integration and regulation of transmitter release depends on the spatial relationship and coupling of receptors and their effectors in subcellular compartments of the target neurons. We have been, therefore, investigating the structural and functional basis of metabotropic receptor-effector ion channel complex-mediated signaling in cortical principal cells and GABAergic interneurons, as well as studying the activity-dependent regulation of the surface dynamics of protein complexes.


10 selected publications

  • Presynaptic GABAB receptors functionally uncouple somatostatin interneurons from the active hippocampal network.
    Booker SA, Harada H, Elgueta C, Bank J, Bartos M, Kulik A*, Vida I* (2020).
    eLife 9, e51156 (*Corresponding authors).
  • Postsynaptic GABABRs inhibit L-type calcium channels and abolish long-term potentiation in hippocampal somatostatin interneurons.
    Booker SA, Loreth D, Gee AL, Watanabe M, Kind PC, Wyllie DJA, Kulik A*, Vida I* (2018).
    Cell Reports 2;22(1):36-43. (*Corresponding authors).
  • KCTD12 auxiliary proteins modulate kinetics of GABAB receptor-mediated inhibition in cholecystokinin-containing interneurons.
    Booker SA, Althof D, Gross A, Loreth D, Müller J, Unger A, Fakler B, Varro A, Watanabe M, Gassmann M, Bettler B, Shigemoto R, Vida I*, Kulik A* (2017).
    Cerebral Cortex 27, 2318-2334 (*Corresponding authors).
  • Inhibitory and excitatory axon terminals share a common nano-architecture of their Cav2.1 (P/Q-type) Ca2+ channels.
    Althof D, Baehrens D, Watanabe M, Suzuki N, Fakler B, Kulik A (2015).
    Frontiers in Cellular Neuroscience 9, 315.
  • Differential GABAB receptor-mediated effects in perisomatic- and dendrite-targeting parvalbumin interneurons.
    Booker SA, Gross A, Althof D, Shigemoto R, Bettler B, Frotscher M, Hearing M, Wickman K, Watanabe M, Kulik A*, Vida I* (2013).
    The Journal of Neuroscience 33, 7961-7974   (*Corresponding authors).
  • Quantitative regional and ultrastructural localization of the Cav2.3 subunit of R-type calcium channels in mouse brain.
    Parajuli LK, Nakajima C, Kulik A*, Matsui K, Schneider T, Shigemoto R, Fukazawa Y* (2012).
    The Journal of Neuroscience 32, 13555-13567.    (*Corresponding authors).
  • The GABAB1a isoform mediates heterosynaptic depression at hippocampal mossy fiber synapses.
    Guetg N, Seddik R, Vigot R, Turecek R, Gassmann M, Vogt KE, Bräuner-Osborne H, Shigemoto R, Kretz O, Frotscher M, Kulik A*, Bettler B* (2009).
    Journal of Neuroscience 29, 1414-1423.    (*Corresponding authors).
  • Compartment-dependent co-localization of Kir3.2-containing K+ channels and GABAB receptors in hippocampal pyramidal cells.
    Kulik A, Vida I, Fukazawa Y, Guetg N, Kasugai Y, Marker C, Rigato F, Bettler B, Wickman K, Frotscher M, Shigemoto R (2006).
    Journal of Neuroscience 26, 4289-4297.
  • Immunocytochemical localization of the a1A subunit of the P/Q-type calcium channel in the rat cerebellum.
    Kulik A, Nakadate K, Hagiwara A, Fukazawa Y, Lujan R, Saito H, Suzuki N, Futatsugi A, Mikoshiba K, Frotscher M, Shigemoto R (2004).
    European Journal of Neuroscience 19, 2169-2178.
  • Subcellular localization of metabotropic GABAB receptor subunits GABAB1a/b and GABAB2 in the rat hippocampus.
    Kulik A, Vida I, Lujan R, Haas CA, Lopez-Bendito G, Shigemoto R, Frotscher M (2003).
    Journal of Neuroscience 23, 11026-11035.