Thermo Scientific Open Biosystems
TransLenti Viral GIPZ Packaging System

Catalog #: TLP4614, TLP4615 (with cell line), TLP4691 (Bulk-50 rxns) and TLP4692 (Bulk-100 rxns)

Product Description
The Open Biosystems TransLenti™ Viral GIPZ Packaging System allows creation of a replication-incompetent (Shimada et al. 1995), HIV-1-based lentivirus which can be used to deliver and express your shRNA of interest in either dividing or non-dividing mammalian cells. The TransLenti Viral GIPZ Packaging System uses a replication-incompetent lentivirus based on the trans-lentiviral system developed by Kappes et al. (2001).

Please note that GIPZ vectors are not compatible with third generation packaging systems such as ViraPower from Invitrogen. We recommend the TransLenti Viral Packaging System for use with our vectors.

Components Of The TransLenti Viral GIPZ Packaging System
The TransLenti Viral GIPZ Packaging System possesses features which enhance its biosafety while allowing high-level shRNA expression in a wider range of cell types than traditional retroviral systems. The system includes the following major components:

• TransLenti Viral Packaging Mix - contains an optimized mixture of five packaging plasmids (pTLA1-Pak, pTLA1-Enz, pTLA1-Env, pTLA1-Rev and pTLA1-TOFF) to facilitate viral packaging of the transfer vector following co-transfection into TLAHEK293T producer cells. These plasmids supply the helper functions as well as structural and enzymatic proteins in trans required to produce the lentivirus. For more information about the components for the packaging plasmids, see pages 10-11.

• Optimized TLA-HEK293T Producer Cell Line - allows production of the lentivirus following co-transfection of the transfer plasmid and the packaging plasmids in the packaging mix. The cell line stably expresses the SV40 large T antigen and facilitates the production of high viral titers. Optional – Not included in all configurations.

• Arrest-In Transfection Reagent - a proprietary lipo-polymeric formulation, developed and optimized for transfection of shRNA plasmid DNA into the nucleus of cultured eukaryotic cells. Arrest-In also provides an enhanced uptake efficiency of the shRNA plasmid DNA into cells.

• pGIPZ Non-Silencing Control Vector - for use as an expression control. We recommend including the control vector in the co-transfection procedure to generate a control lentiviral stock that may be used to help optimize expression conditions in the mammalian cell line of interest. Not included in bulk configurations.

• pGIPZ Cloning Vector - the empty pGIPZ vector into which a TurboGFP reporter is cloned. The vector also contains the elements required to allow packaging of the expression construct into virions (e.g. 5′ and 3′ LTRs, Ψ packaging signal). Not included in bulk configurations.

Biosafety Features
The TransLenti Viral GIPZ Packaging System is based on lentiviral vectors developed by Kappes and Wu (Kappes et al. 2001; Kappes et al. 2003; Wu et al. 2000; Wu et al. 2001). This newest generation lentiviral system includes a significant number of safety features designed to enhance its biosafety and to minimize its relation to the wild-type, human HIV-1 virus. More significantly, the reverse transcriptase (RT) and integrase (IN) proteins are split from the native Gag-Pol polyprotein structure and are provided in trans from a separate plasmid producing a novel class of HIV-based vectors. Instead of expressing Gag-Pol, the TransLenti Viral system contains a plasmid that expresses Gag/Gag-Pro and one that expresses Pol (RT & IN) fused to Vpr. Removing the RT & IN from the packaging construct prevents the lentiviral replication machinery from functioning. This system, in contrast to the standard third generation vectors, prevents the generation of recombinant viral particles that possess the required functional Gag-Pol structure for DNA mobilization and the emergence of replication competent lentivirus.

Figure 1 illustrates the absence of functional Gag-Pol recombinants in lentiviral stocks generated from the Trans-Lentiviral GIPZ Packaging System.
Use of the TransLenti Viral GIPZ Packaging System to facilitate lentiviral-based expression of the gene of interest provides the following advantages:

- Generates an HIV-1-based lentivirus vector that effectively transduces both dividing and non-dividing mammalian cells.
- Efficiently delivers the gene of interest to mammalian cells in culture or in vivo.
- Eliminates the production of replication competent viral particles.

The TransLenti Viral GIPZ Packaging System includes the following key safety features:

- The expression vectors contain a deletion in the 3′ LTR (ΔU3) that does not affect generation of the viral genome in the producer cell line, but results in “self-inactivation” of the lentivirus after transduction of the target cell (Shimada et al. 1995 and Zufferey et al. 1998).
- The number of genes from HIV-1 that are used in the system has been reduced (i.e. gag, pol, rev, tat and vpr).
- The VSV-G gene from Vesicular Stomatitis Virus is used to pseudotype the vector particles (Yee et al. 1994). The HIV-1 envelope has been completely removed from the vector.
- Genes encoding the structural and other components required for packaging the viral genome are separated onto four plasmids.
- Although the packaging plasmids allow expression in trans of genes required to produce viral progeny (e.g. gag, pol, rev, tat, env) in the TLA-HEK293T producer cell line, none of them contain LTRs or the Ψ packaging sequence. This means that none of the HIV-1 structural genes are actually present in the packaged viral genome, and thus, are never expressed in the transduced target cell. No new replication-competent virus has been shown to be produced.

Biosafety Level 2

We suggest the use of Biosafety Level 2 precautions when working with TransLenti Viral GIPZ Packaging System. For more information regarding viral agents and Biosafety Level 2 laboratory guidelines and precautions. Please follow the safety guidelines for use and production of vector-based lentivirus as set by your institution’s biosafety committee. In general, the NIH Office of Biotechnology BSL2 or BSL2+ guidelines should be followed.

Protocols

Producing Lentivirus in TLA-HEK293T Cells

Before a stably transduced cell line expressing the shRNA of interest can be created, a lentiviral stock (containing the packaged transfer vector) will first need to be produced by co-transfecting the optimized packaging plasmid mix and the transfer vector construct into the TLA-HEK293T cell line. Co-transfection of the TransLenti Viral Packaging Mix and the transfer vector containing the shRNA of interest into TLA-HEK293T cells will produce a replication-incompetent (Shimada et al. 1995) lentivirus, which can then be transduced into the mammalian cell line of interest. The following section provides protocols and instructions to generate a lentiviral stock.

Recommended Transfection Conditions

Produce lentiviral stocks in TLA-HEK293T cells using the following optimized amounts of transfection
components below (see Table 1) and transfection conditions. The amount of lentivirus produced using these
recommended component amounts and conditions generally results in a titer of approximately \(1 \times 10^6 \) transducing units (TU) per ml (unconcentrated). We recommend concentrating the viral stock to obtain a titer of approximately
\(1 \times 10^8 \) transducing units (TU) per ml.

Table 1. Transfection Components.

<table>
<thead>
<tr>
<th>Components</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tissue culture plate size</td>
<td>100 mm (one per lentiviral construct)</td>
</tr>
<tr>
<td>Number of TLA-HEK293T cells to transfect</td>
<td>(5.5 \times 10^6) cells</td>
</tr>
<tr>
<td>Amount of TransLenti Viral Packaging Mix</td>
<td>28.5 μg (30 μl* of packaging mix stock)</td>
</tr>
<tr>
<td>Amount of pGIPZ Transfer Vector</td>
<td>9 μg</td>
</tr>
<tr>
<td>Amount of Arrest-In Transfection Reagent</td>
<td>187.5 μg (187.5 μl of 1 mg/ml stock)</td>
</tr>
</tbody>
</table>

* For lot numbers D2908 or C2509 use only 26 μl of packaging mix stock.
* For lot numbers K1008 or L1808 use only 20 μl of packaging mix stock.
Note: All other lot number use the amount specified in table 1 (30 uls)

Protocol I-Transfection And Virus Production

The protocol below is optimized for transfection of the shRNA plasmid DNA into TLA-HEK293T cells in a
100 mm plate using serum-free media. If a different culture dish is used, adjust the number of cells, volumes and
reagent quantities in proportion to the change in surface area (Table 2).

In the days leading up to transfection, it is important to split or expand the cells 1:2 so that the cells are in a
"rapid" replication state. This allows for the transcriptional and translational machinery of the cell to function at
the highest level when generating virus.

It is preferable that transfections be carried out in medium that is serum-free and antibiotic-free. A reduction in
transfection efficiency occurs in the presence of serum, however it is possible to carry out successful transfections
with serum present. If the use of serum is required, transfection conditions will have to be re-optimized.

Warm Arrest-In to ambient temperature (approximately 20 minutes at room temperature) prior to use. Always mix
well by vortex or inversion prior to use.

Maintain sterile working conditions with the DNA and Arrest-In mixtures as they will be added to the cells.

Table 2. Suggested amounts of DNA, medium and transfection reagent to deliver constructs into adherent cells.

<table>
<thead>
<tr>
<th>Tissue Culture Dish</th>
<th>Surface Area per Well (cm²)</th>
<th>Total Serum-free Medium Volume per Well (ml)</th>
<th>Packaging Mix Plus Transfer vector Plasmid DNA (μg)*</th>
<th>Transfection Reagent (μl)**</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 mm</td>
<td>56</td>
<td>5 ml</td>
<td>37.5 μg</td>
<td>187.5 μl</td>
</tr>
</tbody>
</table>

*Recommended starting amount of DNA. May need to be optimized for the highest efficiency.
**Recommended starting amounts of transfection reagent. See Transfection Optimization.

1. The day before transfection (day 0), plate the TLA-HEK293T cells at a density of \(5.5 \times 10^6 \) cells per 100 mm plate.

 Full medium (i.e. with serum and antibiotics) will still be used at this stage.

2. On the day of transfection, form the DNA/Arrest-In complexes.

 The principle is to prepare the DNA and transfection reagent dilutions in an equal amount of serum-free medium in two separate tubes. These two mixtures (i.e. the DNA and the Arrest-In) will be added to each other and incubated for 20 minutes prior to addition to the cells. This enables the DNA/Arrest-In complexes to form.

 a. For each plate of cells to be transfected, dilute 37.5 μg DNA into 1 ml (total volume) of serum-free medium in a microfuge tube.

 b. Dilute 187.5 μl of Arrest-In into 1 ml (total volume) of serum-free medium in a separate microfuge tube.

 c. Add the diluted DNA (step a) to the diluted Arrest-In reagent (step b), mix rapidly then incubate for 20 minutes at room temperature.

 This will give a 1:5 DNA:Arrest-In ratio which is recommended for successful transfection. The total volume will be 2 ml at this stage.
3. Aspirate the growth medium from the cells. Add an additional 3ml of serum free medium to each of the tubes containing the transfection complexes, mix gently, then overlay onto the cells. Return the cells to the CO₂ incubator at 37°C for 3-6 hrs. Return the cells to the CO₂ incubator at 37°C for 3-6 hrs.
 The total volume will be 5 ml at this stage.

4. Aspirate the transfection mixture and replace with 12 ml standard culture medium. Return the cells to the CO₂ incubator at 37°C.

5. After 48-72 hours of incubation, examine the cells microscopically for the presence of TurboGFP expression which is an indication of transfection efficiency.

6. Harvest virus-containing supernatants 48-72 hours post-transfection by removing medium to a 15 ml sterile, capped, conical tube.
 If you are concentrating virus, you should harvest the supernatant at two intervals, 48 and 72 hours post-transfection. At 48 hours post-transfection, collect the supernatant into a 50 ml sterile, capped, conical tube. Store the tube containing supernatant overnight at 4°C. To the 100 mm plate, carefully pipette 12 ml standard culture medium back onto the transfected cells and return plate to the CO₂ incubator at 37°C. The following day (72 hours post-transfection), harvest the culture supernatant and combine with supernatant harvested the day before. Follow the protocol below for concentration of the virus stock. Caution: Remember that you are working with infectious virus at this stage. Follow the recommended guidelines for working with BL-2 organisms (see page 2 for more information).

7. Centrifuge tube containing harvested supernatant at 3000 rpm for 20 minutes at 4°C to pellet cell debris. Perform filtration step*, if desired.
 *If you plan to use your lentiviral construct for in vivo applications, we recommend filtering your viral supernatant through a sterile, 0.45 μm low protein binding filter after the low-speed centrifugation step to remove any remaining cellular debris. We recommend using Millex-HV 0.45 μm PVDF filters (Millipore) for filtration.

Transfection Optimization using Arrest-In
It is essential to optimize transfection conditions to achieve the highest transfection efficiencies and lowest toxicity with your cells. The most important parameters for optimization are DNA to transfection reagent ratio, DNA concentrations and cell confluency. We recommend that you initially begin with the Arrest-In and DNA amounts indicated in Table 3 & 4 and the number of cells as listed in step 1 of the protocol for transfection and virus production. If a different culture dish is used, adjust the number of cells, volumes and reagent quantities in proportion to the change in surface area (see Table 4).

Protocol II-Concentrating Viral Particles
We recommend that you concentrate your viral stock to obtain a higher titer. You will need to perform the filtration step first before concentrating your viral stock. You should expect your viral titer to increase at least 60-fold after concentrating. You should also expect a possible 30-50% loss in total viral yield.

1. Pipette supernatant into a sterile SW28 ultracentrifuge tube, centrifuge at 23,000 rpm for 1.5 hours at 4°C.
2. After ultracentrifugation, carefully aspirate and discard the supernatant.
3. Pipette the desired resuspension volume of DMEM (no serum) onto the pellet at the bottom of the tube. The minimum resuspension volume per pellet of supernatant collected from a 100 mm plate is 100 μl as it is difficult to resuspend in less volume. For one SW28 tube, which holds about 35 ml of supernatant, we recommend resuspending in ~250 μl.
4. The visible pellet is made up mostly of serum proteins from the culture media of the transfected cells. The viral particles need to be dislodged from this protein pellet. After adding the DMEM to the pellet, let it sit for 5-10 minutes then gently pipette up and down about 30 times trying to avoid formation of bubbles.
5. Transfer the resuspended pellet to a sterile microfuge tube and centrifuge at full speed for 3-4 minutes. This will pellet the serum proteins, which adhere to the bottom of the tube. After centrifugation, transfer the supernatant to a new microfuge tube and then aliquot into multiple vials.
6. Store aliquots at -80°C.
7. Proceed to Transduction and Titering.
Long-Term Storage
Place viral stocks at -80°C for long-term storage. Avoid freezing and thawing as it will result in loss of viral titer. When stored properly, viral stocks of an appropriate titer should be suitable for use for up to one year. After long-term storage, we recommend re-titering your viral stocks before transducing your mammalian cell line of interest.

Protocol III-Transduction And Titering
Follow the procedure below to determine the titer of your lentiviral stock using the mammalian cell line of choice. This protocol uses the TLA-HEK293T cell line that is available as part of the TransLenti Viral GIPZ Packaging System (Thermo Scientific Open Biosystems Catalog # TLP4615).

Note: If you have generated a lentiviral stock of the expression control (e.g. pGIPZ Non-Silencing), we recommend titering this stock as well.

1. The day before transduction, seed a 24-well tissue culture plate with TLA-HEK293T cells at 5 x 10^4 cells per well in DMEM (10% FBS, 1% pen-strep).
 The following day, the well should be no more than 40-50% confluent. TLA-HEK293T (Thermo Scientific Open Biosystems Catalog # HCL4517).

2. Make dilutions of the viral stock in a round bottom 96-well plate using serum-free media. Utilize the plate as shown in Figure 2 using one row for each virus stock to be tested. Use the procedure below (starting at step 4) for dilution of the viral stocks. The goal is to produce a series of 5-fold dilutions to reach a final dilution of 390625-fold.

3. To each well add 80 μl of serum-free media.

4. Add 20 μl of thawed virus stock to each corresponding well in column 1 (5-fold dilution). Pipette contents of well up and down 10-15 times. Discard pipette tip.

5. With new pipette tips, transfer 20 μl from each well of column 1 to the corresponding well in column 2. Pipette 10-15 times and discard pipette tips.

6. With new pipette tips, transfer 20 μl from each well of column 2 to the corresponding well in column 3. Pipette 10-15 times and discard pipette tip.

7. Repeat transfers of 20 μl from columns 3 through 8, pipetting up and down 10-15 times and changing pipette tips between each dilution. It is strongly recommended that you use a high quality multichannel pipettor when performing multiple dilutions. Pre-incubate the dilutions of the virus stock for 5 minutes at room temperature.

8. Label 24-well plate as shown in Figure 3 using one row for each virus stock to be tested.
9. Remove culture media from the cells in the 24-well plate.

10. Add 225 μl of serum-free media to each well.

11. Transduce cells by adding 25 μl of diluted virus from the original 96-well plate (in Figure 2) to a well on the 24-well destination plate (in Figure 3) containing the cells.

 For example, transfer 25 μl from well A2 of the 96-well plate into well A1 in the 24-well plate (see Table 3).

12. Incubate transduced cultures at 37°C for 4 hours.

13. Remove transduction mix from cultures and add 1 ml of DMEM (10% FBS, 1% Pen-Strep).

14. Culture cells for 48 hours.

15. Count the TurboGFP expressing cells or colonies of cells.

 Count each multi-cell colony as 1 transduced cell, as the cells will be dividing over the 48 hour culture period. Figure 4 illustrates this principle of counting.

 Note: Expression of the VSV-G glycoprotein causes HEK293T cells to fuse, resulting in the appearance of multinucleated syncitia. This morphological change is normal and does not affect production of the lentivirus.

16. Transducing units per ml (TU/ml) can be determined using the following formula:

 \[
 \text{# of TurboGFP positive colonies counted} \times \text{dilution factor} \times 40 = \text{#TU/ml}
 \]

 *Example: 55 TurboGFP positive colonies counted in well A3.

 \[
 55 \times 625 \times 40 = 1.38 \times 10^6 \text{ TU/ml}
 \]

![Figure 4. Examples of individual colonies.](image)

Transduction and Analysis

Once you have generated a lentiviral stock with a suitable titer, you are ready to transduce the lentiviral vector into the mammalian cell line of choice and assay for knockdown of your gene of interest.

Multiplicity of Infection (MOI)

To obtain optimal expression of your shRNA, you will need to transduce the lentiviral vector into your mammalian cell line of choice using a suitable MOI. MOI is defined as the number of transducing units per cell. Although this is cell line dependent, this generally correlates with the number of integration events and as a result, level of expression.

<table>
<thead>
<tr>
<th>Well (Row A, B, C, or D)</th>
<th>Volume Diluted Virus Used</th>
<th>Dilution Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Originating (96-well plate)</td>
<td>Destination (24-well plate)</td>
<td></td>
</tr>
<tr>
<td>A1</td>
<td>25 μl</td>
<td>5 *</td>
</tr>
<tr>
<td>A2</td>
<td>25 μl</td>
<td>25</td>
</tr>
<tr>
<td>A3</td>
<td>25 μl</td>
<td>125</td>
</tr>
<tr>
<td>A4</td>
<td>25 μl</td>
<td>625</td>
</tr>
<tr>
<td>A5</td>
<td>25 μl</td>
<td>3125</td>
</tr>
<tr>
<td>A6</td>
<td>25 μl</td>
<td>15625</td>
</tr>
<tr>
<td>A7</td>
<td>25 μl</td>
<td>78125</td>
</tr>
<tr>
<td>A8</td>
<td>25 μl</td>
<td>390625 *</td>
</tr>
</tbody>
</table>

Please note that when expecting very high or very low titers, it would be advisable to include either well 8 or well 1 respectively.

12. Incubate transduced cultures at 37°C for 4 hours.

13. Remove transduction mix from cultures and add 1 ml of DMEM (10% FBS, 1% Pen-Strep).

14. Culture cells for 48 hours.

15. Count the TurboGFP expressing cells or colonies of cells.

 Count each multi-cell colony as 1 transduced cell, as the cells will be dividing over the 48 hour culture period. Figure 4 illustrates this principle of counting.

 Note: Expression of the VSV-G glycoprotein causes HEK293T cells to fuse, resulting in the appearance of multinucleated syncitia. This morphological change is normal and does not affect production of the lentivirus.

16. Transducing units per ml (TU/ml) can be determined using the following formula:

 \[
 \text{# of TurboGFP positive colonies counted} \times \text{dilution factor} \times 40 = \text{#TU/ml}
 \]

 *Example: 55 TurboGFP positive colonies counted in well A3.

 \[
 55 \times 625 \times 40 = 1.38 \times 10^6 \text{ TU/ml}
 \]

Figure 4. Examples of individual colonies.
Determining the Optimal MOI
A number of factors can influence determination of an optimal MOI including the nature of your mammalian cell, its transduction efficiency, your application of interest, and the nature of your gene of interest. If you are transducing your lentiviral construct into the mammalian cell line of choice for the first time, after you have titered it, we recommend using a range of MOIs (e.g. 0, 0.5, 1, 2, 5, 10, 20) to determine the MOI required to obtain optimal expression for your particular application. It should be noted that to achieve single copy knockdown, an MOI of 0.3 is generally used, as less than 4% of your cells will have more than one insert.

Expression Control
In general, we have found that 60-70% of the cells in an actively dividing cell line express a shRNA when transduced at an MOI of ~1. Some non-dividing cell lines transduce lentiviral constructs less efficiently. For example, only about 50% of the cells in a culture of primary human fibroblasts express a shRNA when transduced at an MOI of ~1. If you are transducing your lentiviral construct into a non-dividing cell type, you may need to increase the MOI to achieve optimal expression levels of your shRNA.

Protocol IV-Puromycin Kill Curve And Puromycin Selection
In order to generate stable cell lines, it is important to determine the minimum amount of puromycin required to kill non-transfected/transduced cells. This can be done by generating a puromycin kill curve.

Puromycin Kill Curve
1. On day 0, plate 5 - 8 x 10⁴ cells per well in a 24-well plate in enough wells to carry out your puromycin dilutions. Incubate overnight.
2. Prepare media specifically for your cells containing a range of antibiotic, for example: 0 - 15 μg/ml puromycin.
3. The next day (day 1) replace the growth media with the media containing the dilutions of the antibiotic into the appropriate wells.
4. Incubate at 37°C.
5. Approximately every 2 - 3 days replace with freshly prepared selective media.
6. Monitor the cells daily and observe the percentage of surviving cells. Optimum effectiveness should be reached in 1-4 days under puromycin selection.
7. The minimum antibiotic concentration to use is the lowest concentration that kills 100% of the cells in 1 - 4 days from the start of antibiotic selection (see Figure 5).

Figure 5. Puromycin kill curve depicting cell death in relation to increasing doses of puromycin over time.
Puromycin Selection of Transduced Cells
1. On day 0, plate 5 - 8 x 10^4 cells per well in a 24-well plate. Incubate overnight.
2. Prepare media specifically for your cells containing the concentration of puromycin you selected based on the above “kill curve”.
3. The next day (day 1), remove the medium and add the virus to the MOI you wish to use.
 Bring the total volume of liquid up so that it just covers the cells efficiently with serum-free media. If you are using concentrated virus you are likely to use very little virus volume and a lot of serum-free media; if you are using unconcentrated virus you will find you need much more virus volume.
4. Approximately 6-8 hours post-transduction, add an additional 1 ml of full media (serum plus pen-strep if you are using it) to your cells and incubate overnight.
5. At 48 hours post transduction, replace the full growth media with full growth media containing the puromycin into the appropriate wells. Incubate.
6. Approximately every 2-3 days replace with freshly prepared selective media.
7. Monitor the cells daily and observe the percentage of surviving cells as well as the level and total percentage of TurboGFP expression. At some point almost all of the cells surviving selection will be expressing TurboGFP. Optimum effectiveness should be reached in 3-10 days with puromycin.
 Please note that the higher the MOI you have chosen the more copies of the shRNA and puromycin resistance gene you will have per cell. When selecting on puromycin, it is worth remembering that at higher MOIs, cells containing multiple copies of the resistance gene can withstand higher puromycin concentrations than those at lower MOIs. Adjust the concentration of puromycin to a level that will select for the population of transduced cells you wish to select for, without going below the minimum antibiotic concentration you have established in your “kill curve”.
8. Proceed to extract RNA for knock down evaluation by quantitative RT-PCR.

Figure 6. Residual GAPDH activity, as determined by quantitative RT-PCR, after transduction with a shRNA against GAPDH and puromycin selection at various concentrations.
Protocol V-Culturing TLA-HEK293T Cells

TLA-HEK293T cells are cultured in a complete growth medium at 37°C with 5% CO₂. TLA-HEK293T cells detach easily from the culture dish surface. Therefore, handle the cells gently when replacing the culture medium or during washing.

Starting Cells from Frozen Cell Stock

1. Remove the TLA-HEK293T packaging cell line from liquid nitrogen and carry out a ‘quick thaw’. Float the cells in the 37°C water bath for 2-5 minutes until nearly (~80%) thawed.

 TLA-HEK293T stocks are frozen in 70% DMEM media, 20% fetal calf serum, and 10% DMSO, unless otherwise noted. Once cells are thawed, it is important to dilute the cells 1:10 in growth media immediately to reduce the potentially toxic effects of the DMSO preservative on the cells.

 *** PLEASE NOTE, it is common to observe cell death of 50% or greater as a result of shipping. Please follow the protocol below for reaching confluency.

2. Remove the cells from the vial and add slowly into a 15 ml conical tube containing 10 ml pre-warmed media.
3. Centrifuge for 3 minutes ~1000 xg to pellet cells and remove the supernatant.
4. Add 14 ml of media and transfer cells to a T25 flask or a 100 mm culture dish.
5. Place the cells in the 37°C incubator with 5% CO₂.
6. If you observe cell death, wash your cells with PBS or change the media in order to remove the dead cells.
7. Allow to incubate for 2 – 3 days to reach confluency. See images in FAQ section for examples.

Cell Maintenance

1. Fresh medium should be added to the cells every 3 days or as required by the growth rate of the cells.
2. TLA-HEK293T cells should always be treated very gently as they detach easily from the plate.
3. Add an appropriate volume of pre-warmed complete medium to the cells. You may first need to rinse the cells with PBS or media prior to feeding the cells.
 This is typically done if there is a high degree of dead cells or debris in the culture, as would be expected after a thaw.
4. Return the cells to the 37°C incubator with 5% CO₂.

Sub-Culturing/Passaging Of Cells

1. TLA-HEK293T cells are passaged when they are 90% confluent to a ratio of 1:15 to 1:20 for general maintenance.
 Cells can be passaged using a smaller ratio but will then reach confluency quicker and will need to be passed more frequently (for example 1:5).
2. Carefully aspirate the growth media from the cells. This is best done by tilting the flask or plate and removing the medium without touching the cell surface.
3. Gently wash cells with PBS.
4. Trypsinize the cells (see Table 4). Place plate in the 37°C incubator for ~2 minutes for cells to release from the plate.
5. Add complete cell growth media to resuspend cells and inactivate the trypsin.
6. Pipette cells up and down ~5 times with a 10 ml strip pipette to get a single cell suspension, while avoiding frothing of media.
7. Plate cells into new sterile flasks or plates containing complete growth medium (see Table 5). Place the cells at 37°C with 5% CO₂.

Table 4. Trypsinization and resuspension volumes for routinely used vessels.

<table>
<thead>
<tr>
<th>Cell Culture Vessel</th>
<th>PBS Wash (ml)</th>
<th>Trypsin (ml)</th>
<th>Resuspension Cell Growth Media (ml)</th>
<th>Recommended Volume Media in New Flask (ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-25 or 100 mm</td>
<td>2.5</td>
<td>1</td>
<td>5-10</td>
<td>5-10</td>
</tr>
<tr>
<td>T-150</td>
<td>10</td>
<td>2</td>
<td>10</td>
<td>30-40</td>
</tr>
<tr>
<td>T-175</td>
<td>10</td>
<td>2</td>
<td>10</td>
<td>35-50</td>
</tr>
</tbody>
</table>
Table 5. Flask and plate surface areas and recommended volumes.

<table>
<thead>
<tr>
<th>Flask Type</th>
<th>Growth Area Per Well (cm²)</th>
<th>Volume Growth Media Per Well</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-175</td>
<td>175</td>
<td>35-50</td>
</tr>
<tr>
<td>T-150</td>
<td>150</td>
<td>30-40</td>
</tr>
<tr>
<td>100 mm dish</td>
<td>55</td>
<td>10</td>
</tr>
<tr>
<td>T-25</td>
<td>25</td>
<td>10</td>
</tr>
<tr>
<td>6-well</td>
<td>9.5</td>
<td>3</td>
</tr>
<tr>
<td>12-well</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>24-well</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>48-well</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>96-well</td>
<td>0.32</td>
<td>0.1</td>
</tr>
<tr>
<td>8-well chamber</td>
<td>0.8</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Table 6. Components of the pTLA1-Pak plasmid.

<table>
<thead>
<tr>
<th>Human cytomegalovirus (Tre-CMV)</th>
<th>RNA polymerase II promoter that permits high-level expression of the lentiviral \textit{gag} and \textit{pro} genes in mammalian cells.</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{gag}</td>
<td>Virion structural proteins for forming the virion core and ribonucleoprotein complex within the core.</td>
</tr>
<tr>
<td>\textit{pro}</td>
<td>Aspartyl-protease that cleaves the Gag, Gag-Pro, Gag-Pro-Pol polyproteins to produce viral proteins in their mature forms.</td>
</tr>
<tr>
<td>\textit{rev}</td>
<td>Viral protein that binds to the RRE and facilitates the transport of unspliced and incompletely spliced mRNAs to the cytoplasm.</td>
</tr>
<tr>
<td>\textit{tat}</td>
<td>Transcriptional activator of lentiviral gene expression, enhancing LTR-directed transcription.</td>
</tr>
<tr>
<td>polyA</td>
<td>Allows transcription termination and polyadenylation of the mRNA.</td>
</tr>
<tr>
<td>Ori</td>
<td>Permits high-copy replication and maintenance in \textit{E. coli}.</td>
</tr>
</tbody>
</table>

Table 7. Components of the pTLA1-Enz plasmid.

<table>
<thead>
<tr>
<th>Human cytomegalovirus (CMV)</th>
<th>RNA polymerase II promoter that permits high-level expression of the lentiviral \textit{RT} and \textit{IN} genes in mammalian cells.</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{Vpr}</td>
<td>Viral protein that shuttles the RT and IN into the viral particle.</td>
</tr>
<tr>
<td>\textit{RT}</td>
<td>Reverse Transcriptase; DNA polymerase that copies RNA into DNA.</td>
</tr>
<tr>
<td>\textit{IN}</td>
<td>Integrase; Enzyme responsible for inserting the linear double-stranded DNA copy of the lentiviral genome into host cell DNA.</td>
</tr>
<tr>
<td>\textit{RRE}</td>
<td>Binding site for the Rev protein that aids in the transport of unspliced and singly-spliced RNAs from the nucleus to cytoplasm.</td>
</tr>
<tr>
<td>polyA</td>
<td>Allows transcription termination and polyadenylation of the mRNA.</td>
</tr>
<tr>
<td>Ori</td>
<td>Permits high-copy replication and maintenance in \textit{E. coli}.</td>
</tr>
</tbody>
</table>

Table 8. Components of the pTLA1-Env plasmid.

<table>
<thead>
<tr>
<th>Human cytomegalovirus (CMV)</th>
<th>RNA polymerase II promoter that permits high-level expression of the lentiviral \textit{VSV-G} gene in mammalian cells.</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{VSV-G}</td>
<td>Envelope G glycoprotein from Vesicular Stomatitis Virus to allow production of a pseudotyped lentivirus.</td>
</tr>
<tr>
<td>polyA</td>
<td>Allows transcription termination and polyadenylation of the mRNA.</td>
</tr>
<tr>
<td>Ori</td>
<td>Permits high-copy replication and maintenance in \textit{E. coli}.</td>
</tr>
</tbody>
</table>
Table 9. Components of the pTLA1-Rev plasmid.

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMV</td>
<td>RNA polymerase II promoter that permits high-level expression of the lentiviral tat and rev genes in mammalian cells.</td>
</tr>
<tr>
<td>tat</td>
<td>Transcriptional activator of lentiviral gene expression, enhancing LTR-directed transcription.</td>
</tr>
<tr>
<td>rev</td>
<td>Viral protein that binds to the RRE and facilitates the transport of unspliced and incompletely spliced mRNAs to the cytoplasm.</td>
</tr>
<tr>
<td>polyA</td>
<td>Allows transcription termination and polyadenylation of the mRNA.</td>
</tr>
<tr>
<td>Ori</td>
<td>Permits high-copy replication and maintenance in E. coli.</td>
</tr>
</tbody>
</table>

Table 10. Components of the pTLA1-TOFF plasmid.

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tTA</td>
<td>Transactivator protein that binds to the TRE in the absence of doxycycline and allows transcription through the minimal CMV promoter.</td>
</tr>
<tr>
<td>Ori</td>
<td>Permits high-copy replication and maintenance in E. coli.</td>
</tr>
</tbody>
</table>

Table 11. Components of the pGIPZ shRNAmir transfer vector.

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMV</td>
<td>RNA polymerase II promoter that permits high-level expression of the lentiviral gag and pro genes in mammalian cells.</td>
</tr>
<tr>
<td>Ψ (Psi)</td>
<td>Region of viral RNA responsible for directing packaging.</td>
</tr>
<tr>
<td>PPT</td>
<td>Purine-rich sequence cleaved during reverse transcription to produce the RNA primer for synthesis of viral DNA.</td>
</tr>
<tr>
<td>wpre</td>
<td>Post-transcriptional regulatory element derived from the woodchuck hepatitis virus to increase vector independent expression levels of the transgene.</td>
</tr>
<tr>
<td>3' & 5' LTR</td>
<td>Deletion of the transcriptional enhancers & promoter in the U3 region of the 3' LTR.</td>
</tr>
<tr>
<td>RRE</td>
<td>Green fluorescent protein utilized to track shRNAmir expression.</td>
</tr>
<tr>
<td>Puro</td>
<td>Puromycin-N-acetyl transferase, mammalian drug selectable marker.</td>
</tr>
<tr>
<td>shRNAmir</td>
<td>microRNA-30 flanking a stem-loop-stem structure.</td>
</tr>
<tr>
<td>polyA</td>
<td>Allows transcription termination and polyadenylation of the mRNA.</td>
</tr>
<tr>
<td>Ori</td>
<td>Permits high-copy replication and maintenance in E. coli.</td>
</tr>
<tr>
<td>Amp</td>
<td>Allows selection of the plasmid in E. coli.</td>
</tr>
</tbody>
</table>
Table 12. Related Thermo Scientific Open Biosystems Reagents

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Catalog #</th>
</tr>
</thead>
<tbody>
<tr>
<td>pGIPZ Lentiviral shRNAmir Constructs</td>
<td>RHS4430, RMM4431</td>
</tr>
<tr>
<td>GAPDH Verified Positive Control-glycerol*</td>
<td>RHS4371</td>
</tr>
<tr>
<td>EG5 Verified Positive Control-glycerol*</td>
<td>RHS4480</td>
</tr>
<tr>
<td>Non-silencing Verified Negative Control-glycerol*</td>
<td>RHS4346</td>
</tr>
<tr>
<td>GAPDH Verified Positive Control-viral particles</td>
<td>RHS4372</td>
</tr>
<tr>
<td>EG5 Verified Positive Control-viral particles</td>
<td>RHS4584</td>
</tr>
<tr>
<td>Non-silencing Verified Negative Control-viral particles</td>
<td>RHS4348</td>
</tr>
<tr>
<td>Arrest-In Transfection Reagent 0.5 ml-10 ml*</td>
<td>ATR1740-1743</td>
</tr>
<tr>
<td>pGIPZ Empty Vector</td>
<td>RHS4349</td>
</tr>
<tr>
<td>TLA-HEK293T Packaging Cell Line</td>
<td>HCL4517</td>
</tr>
</tbody>
</table>

*These items also available in the Lentiviral RNAINtro shRNAmir Starter Kit (Thermo Scientific Open Biosystems Catalog #RHS4287)

FAQs

Can Cells Other Than TLA-HEK293T Cells Be Used For Packaging?
Yes, any standard 293T cells can be used for packaging your lentivirus. It is recommended to use a cell line that stably expresses the SV40 large T antigen to facilitate the production of high viral titers. Using a cell line without the SV40 large T antigen will result in low titers.

What Media Recipes Are Recommended To Culture The TLA-HEK293T Cells?
Recommended media recipes are listed below along with companies and catalog numbers that certain items can be purchased from.

1 L Of Media For TLA-HEK293T Cells
885 ml DMEM High Glucose, with sodium pyruvate (Cellgro 10-013-CM)
100 ml FBS (Hyclone SV30014.03)
10 ml Pen-Strep (stock 10,000 I.U. Penicillin and 10,000 mg/ml streptomycin) (Cellgro 30-002-CI)
5 ml L-Glutamine (stock 200 mM L-Glutamine, final concentration 1 mM) (Cellgro 25-005-C3)

100 ml Of Media For Freezing TLA-HEK293T Cells
695 ml DMEM High Glucose, with sodium pyruvate (Cellgro 10-013-CM)
200 ml FBS (Hyclone SV30014.03)
5 ml L-Glutamine (stock 200 mM L-Glutamine, final concentration 1 mM) (Cellgro 25-005-C3)
100 ml DMSO (Calbiochem 317275)

Other Reagents
DPBS 1X w/o calcium and magnesium (Cellgro 21-031-CM)
Trypsin/EDTA (Cellgro 25-053-CI)

After Transfection, My TLA-HEK293T Cells No Longer Look Normal. Why Is This?
Expression of the VSV-G glycoprotein causes HEK293T cells to fuse, resulting in the appearance of multinucleated syncitia. This morphological change is normal and does not affect production of the lentivirus.

What Does The Number 40 Refer To In The Formula For The Calculation Of Titer?
The titer units are given in transducing units (TU) per ml, so the number 40 is used to convert the 25 μl used in the titration (“volume of diluted virus used”, Table 3) to one milliliter.

How Can I Make A Stable Cell Line?
In order to generate stable cell lines, it is important to determine the minimum amount of puromycin required to kill non-transfected/transduced cells. This can be done by generating a puromycin kill curve. The purpose of a kill curve is to find out the minimum amount of puromycin that will kill your cells, so that you can use the minimum amount of puromycin to test for resistant colonies (so as not to kill all of your cells). We suggest that you perform serial dilutions until you find the lowest amount of puromycin that will kill your cells, starting with 0.5 μg/ml. We purchase puromycin from Cellgro™. The catalog number is 61-385-RA.

Which Millipore Filters Do You Use For The Viral Supernatant?
We use various filters dependent on volume size.
<50 mL: catalog number SCGP 005-2, either 0.22 um PES membrane or 0.45 um PVDF membrane,
150 mL: catalog number SCGP-U01-RE, Millipore Stericup express filter unit
500 mL: catalog number SCGP-U05-RE, Millipore Stericup express filter unit
1000 mL: catalog number SCGP-U11-RE, Millipore Stericup express filter unit

I Am Seeing A Large Amount Of Cell Death After I Plate Them. When Following The Recommendations Above, What Can I Expect To See?

24 h P100 before wash

After wash (~70% recovery)

48 h

96 h

FAQS/Troubleshooting
For answers to questions that are not addressed here, please email technical support at openbiosystems@thermofisher.com with your question, your sales order or purchase order number and the catalog number or clone ID of the construct or collection with which you are having trouble.

If Transfection Into Your Cell Line Is Unsuccessful, You May Need To Consider The Following List Of Factors Influencing Successful Transfection:
1. Concentration and purity of plasmid DNA and nucleic acids—determine the concentration of your DNA using 260 nm absorbance. Avoid cytotoxic effects by using pure preparations of nucleic acids.
2. Insufficient mixing of transfection reagent or transfection complexes.
3. Transfection in serum containing or serum free media—our studies indicate that Arrest- In/DNA complexes should preferably be formed in the absence of serum. In the cell lines tested we found that the highest transfection efficiencies can be obtained if the cells are exposed to the transfection complexes in serum-free conditions followed by the addition of medium containing twice the amount of normal serum to the complex medium 3-6 hours post transfection. However, the serum-free transfection medium can be replaced with normal growth medium if high toxicity is observed.
4. Presence of antibiotics in transfection medium—the presence of antibiotics can adversely affect the transfection efficiency and lead to increased toxicity levels in some cell types.
5. High protein expression levels—some proteins when expressed at high levels can be cytotoxic; this effect can also
be cell line specific.

6. Cell history, density, and passage number—it is very important to use healthy cells that are regularly passaged and in growth phase. The highest transfection efficiencies are achieved if cells are plated the day before, however, adequate time should be given to allow the cells to recover from the passaging (generally >12 hours). Plate cells at a consistent density to minimize experimental variation. If transfection efficiencies are low or reduction occurs over time, thawing a new batch of cells or using cells with a lower passage number may improve the results.

If Arrest-In seems to be toxic to a particular cell line, try reducing the DNA:Arrest-In ratio.

References

Cited References:

Suggested Reading

Limited Use Licenses

Limited Use Label License: Benitec
This product is sold solely for use for research purposes in fields other than plants. This product is not transferable. If the purchaser is not willing to accept the conditions of this label license, supplier is willing to accept the return of the unopened product and provide the purchaser with a full refund. However, if the product is opened, then the purchaser agrees to be bound by the conditions of this limited use statement. This product is sold by supplier under license from Benitec Australia Ltd and CSIRO as co-owners of U.S. Patent No. 6,573,099 and foreign counterparts. For information regarding licenses to these patents for use of ddRNAi as a therapeutic agent or as a method to treat/prevent human disease, please contact Benitec at licensing@benitec.com. For the use of ddRNAi in other fields, please contact CSIRO at www.pi.csiro.au/RNAi.

Limited Use Label License: CMV Promoter
The use of the CMV promoter is covered under U.S. Patent Nos. 5,168,062 and 5,385,839 owned and licensed by the University of Iowa Research Foundation and is sold for research use only. Commercial users must obtain a license to these patents directly from the University of Iowa Research Foundation (UIRF), 214 Technology Innovation Center, Iowa City, Iowa 52242. For further information, please contact the Associate Director of UIRF, at (319) 335-4546.

Limited Use Label License: Evrogen Fluorescent Proteins
This product contains a proprietary nucleic acid(s) coding for a proprietary fluorescent protein being, including its derivatives or modifications, the subject of pending U.S. and foreign patent applications and/or patents owned by Evrogen JSC (hereinafter “Evrogen Fluorescent Proteins”). The purchase of this product conveys to the buyer the non-transferable right to use Evrogen Fluorescent Proteins for (i) not-for-profit internal Research conducted by the buyer (whether the buyer is an academic or for-profit entity), where “Research” means non-commercial uses or activities which (or the results of which) do not generate revenue, and (ii) evaluation of Evrogen Fluorescent Proteins for the purpose of testing its appropriateness for development of a therapeutic, clinical diagnostic, vaccine or prophylactic product, provided that Evrogen Fluorescent Proteins are not used in the development or manufacture of such product. Offer of Evrogen Fluorescent Proteins for resale; distribution, transfer, or otherwise providing access to Evrogen Fluorescent Proteins to any third party for any purpose, or any use of Evrogen Fluorescent Proteins other than for Research is strictly